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* Input: Uni-/multi-variate time-series X, Output: label y eClassification: * Task-agnostic SSL may produce sub-optimal performance
* We use Transformer Encoder as the backbone model. o 34 datasets from UEA Time Series Classification archive. ¢ Learn task-aware representation customized to end-task
* T.yp enerates attention scores that is fed to M. o 14 baselines — statistical and deep learning-based. * End-task and reconstruction task trained alternately.

o 2.7% higher average accuracy, 1.74-point lower average

* M selects a set of most important timestamps, and e Data-driven masking strategy uses attention score

randomly samples a subset of those times to produce m. ragk, and best results on 17 datasets comparedto 7by  gjstribution to find timestamps deemed important by
* Generated mask m decides which timestamps to mask 2”best baseline, Time Series Transformer (TST)™ end-task and mask them out for reconstruction.
during reconstruction, T4p. * Regression: * TARNet outperforms 26 baselines on 40 datasets.
L74R = ALmasied + (1= A) Lonmasked. o 6 datase.ts from UEA Time Series Regress.ion archive. . Case.s.tu.dy shows task-avyare method captures domain-
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